ERPsim Lab **ERPsim use in OSCM courses**

Please Note

This webcast is being recorded and will be made available on the ERPsim website. Please be aware that questions you ask or discussions you participate in will be recorded as a part of the presentation. By attending this online event you are giving your permission to being recorded. Participant names / photos / video (if connected to event via webcam) may be shared. If you do not wish to be recorded, please disconnect from the webcast at this time.

This presentation contain references to products of SAP SE, Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany. The names of these products are registered and/or unregistered trademarks of SAP SE. SAP SE is neither the author nor the publisher of this presentation and is not responsible for its content.

SAP UA NAAC Month of Learning - Workshop **Online** | June 19, 2025

Agenda

ERPsim Academic Edition ERPsim © 2004-2025, ERPsim Lab, HEC Montréal.

- 1. Professor's Experience Sharing
 - Justin Jagger, Michigan State University
 - Michael J. Murray, University of Huston
- 2. Faculty Q&A
- 3. ERPsim Disruptors
- 4. Q&A

Justin Jagger

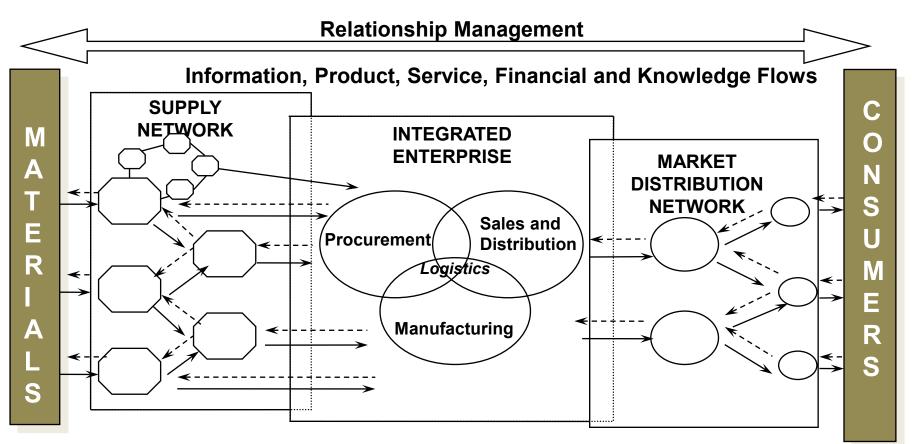
ERPsim Academic Edition ERPsim © 2004-2025, ERPsim Lab, HEC Montréal.

Justin Gagger Fixed-term Faculty Michigan State University

Broad College of Business Department: Supply Chain Management

Why I ERPsim

Justin Jagger Summer 2025


Instructor ("Academic Specialist")

- Education
 - BS, Biology, Central Michigan University
 - MS, Supply Chain Management, Michigan State University
- Prior industry experience in the biologics/vaccine industry

- Joined Broad
 College of Business
 '07
- Taught first SAP
 SCM focused
 elective ~2017
- Previously

 attempted to "inject"
 SAP/ERPsim into
 existing courses

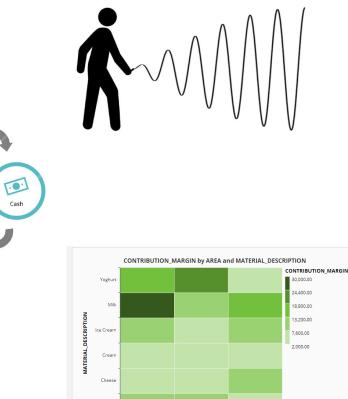
The Integrated Enterprise

END TO END SUPPLY CHAIN VIEW: Capacity, Information, Core Competencies, Capital and Human Resources

Why Critical Thinking Matters in SCM

Accounts

Receivable


Cash

Conversion Cycle

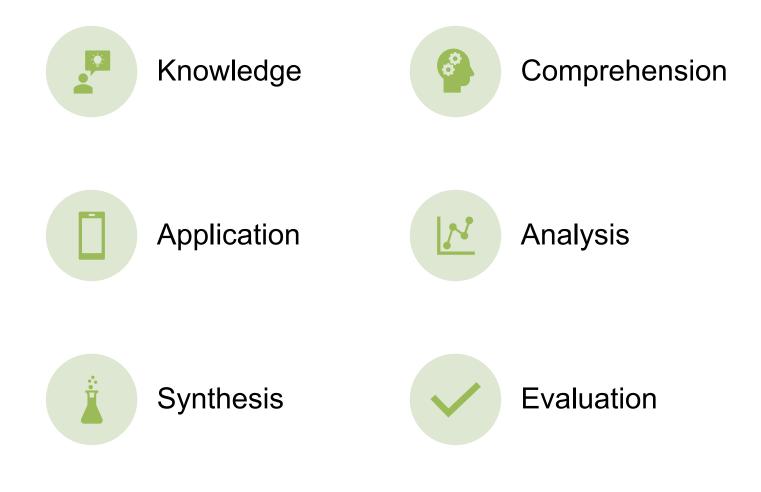
...

Accounts Pavable

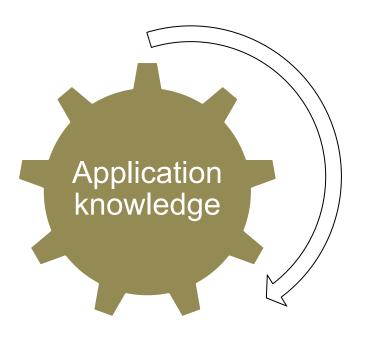
- Bullwhip Effect
 The first simulation
 Business Processing and Integration principles
 - MRP
 - Cash to Cash
 - Communication across disciplines
 - Reports and analytics ("dashboarding")

Butter

North


South

AREA


West

Blooms Taxonomy

Competency Approach

Kang and Santhanam, 2004

Universities and Academia

Become a member of the SAP University Alliances program and enhance your student's academic outcome. Collaborate on research projects and get access to SAP software, teaching materials and related support.

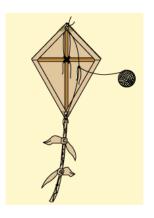


SAP University Alliances

The SAP University Alliances progra Intelligent Enterprise and the expe partnerships, and prepare graduate

Teach hands-on with SAP technol

Competency Approach

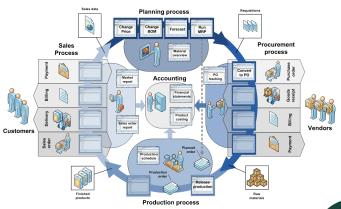

ERPsimLab

Ability to

- Create a shared/communal experience of learning
 - Mentally rewarding
 - Team dynamics and other "human factors"
- Introduce Integrated SCM
 - Business Functions
 - Causal relationships
- Gateway for topical "Deep Dive"
 - Sustainability
 - Digital Supply Chain
 - Data Visualization
 - Machine Learning/Al

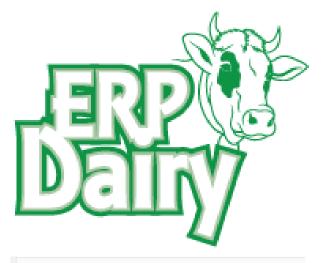
SCM 463: ERP SCM APPLICATIONS

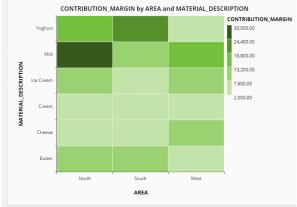
- 2credit elective
- 70-90 students per semester
- Intro course focused on core ERP concepts.
 - Flyakite Integrated Case Study
 - ERPsim Maple/MFG intro-> extended



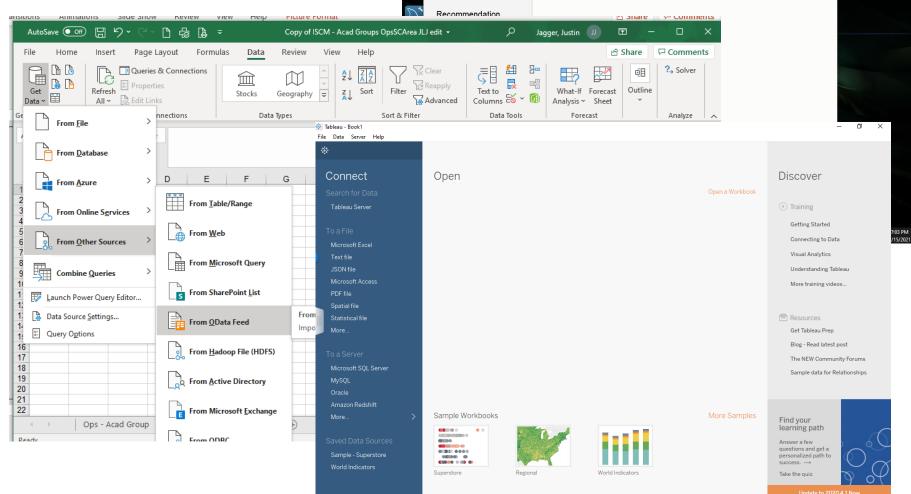
MBA ERPsim Exposure

- SCM 826 Manufacturing Design and Analysis
 - MFG INTRO
 - Introduction to Data Aggregation and Visualization
- SCM 853 Operations Management
 - MFG EXT
 - Multiple visualization tools
 - Actively researching data aggregation via AI to allow for key deeper SCM analysis (fill rates/ stockouts; cash to cash)


Business Knowledge; SCM Context


- **Decision activities** including purchasing and production and sales and distribution (e.g. pricing) with impacts to performance
- Analytical opportunities including cost per unit versus revenue within a simulated market space; competitive aspects that elicit analysis
- **Application exploration** track performance and build visualizations and other dashboarding; can focus on technical expertise
- **Team based learning** activity; communal experience
 - Trust
 - Visibility
 - Equitable

Executive Learning/Masters Level

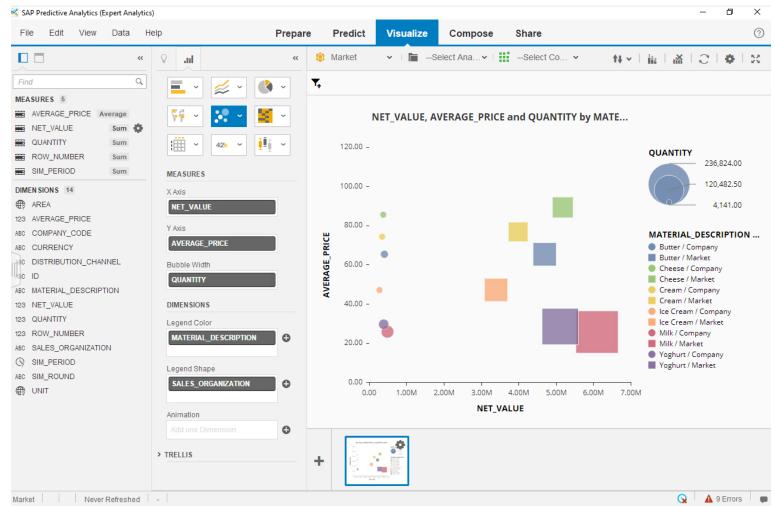

- LOGISTICS Intro/EXT/Platinum
- Limited time exposure
- Not directly competing for market share
- Rapid exposure to analytical tools

Analytical Tools

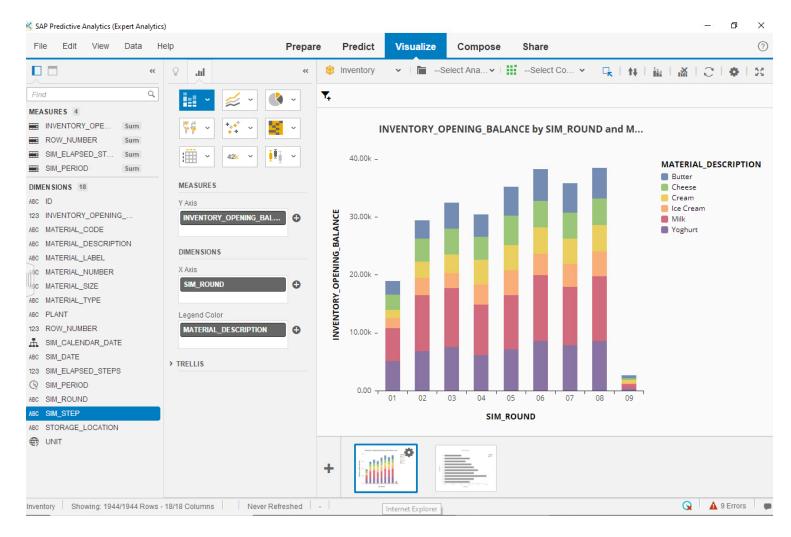
SAP Predictive Analytics® – 🗆 🗙 Data Manager Welcome to Automated Analytics SAP Predictive Analytics®

File Help

Modeler Social


FA

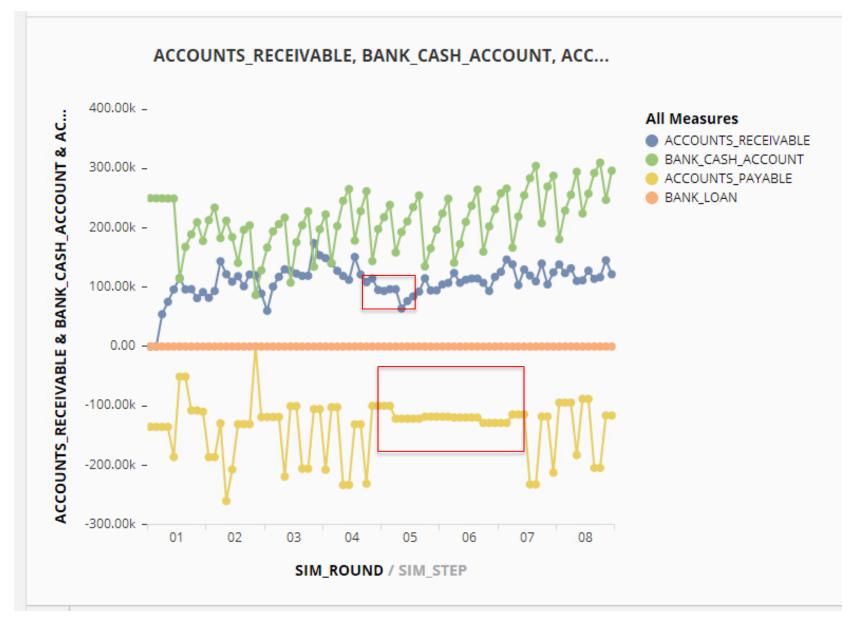
LD)


MICHIGAN STATE UNIVERSITY

馰 /15/2021

MARKET DATA: Multi-dimensional plots

What was the inventory balance by material and round?



What was highest priced item?

Looking ahead

- Adoption of AI capabilities to provide technical assistance in formatting data for creation of metrics
- Advanced cloud-based visualization techniques with ability to slice/dice.

Course and Syllabus Assessment

- Al prompts
- Entered syllabi for both 826 and 853

Manufacturing Design and Analysis (826)

4. Overall Educational Value

The course transforms theoretical instruction into **actionable learning** through a hands-on and iterative approach. Students finish the course equipped to:

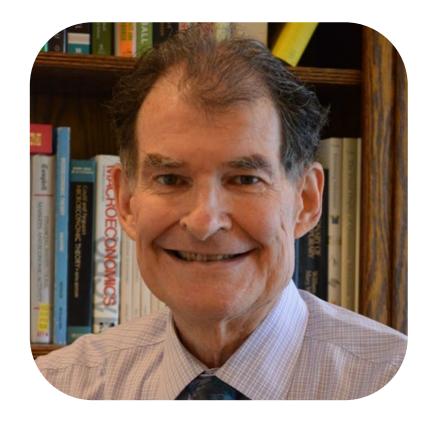
- Assess and enhance manufacturing systems using simulation data.
- Operate within integrated enterprise systems.
- Apply analytical tools for process optimization.
- Communicate performance insights effectively in professional settings.

These skills are directly transferable to careers in operations, supply chain management, and industrial analytics.

Operations Strategy (853)

Based on the syllabus for SS25-SCM 853: Manufacturing Decision and Analysis, here is a comprehensive review of how the **projects and assignments** contribute to student learning in **Operations Strategy**, along with suggestions for possible improvement.

- 1. Educational Value of Projects and Assignments
- a. ERPsim Activities (Participation and Final Game)
 - Description: Students engage in <u>ERPsim</u> Logistics and Digital Transformation Games, simulating real-time decision-making across the supply chain.
 - Learning Outcome: This hands-on simulation ties directly to operations strategy
 principles like MRP, push/pull systems, and KPI-driven decisions. It enhances
 systems thinking, collaboration, and strategic resource allocation.



thankyou

Michael J. Murray

ERPsim Academic Edition ERPsim © 2004-2025, ERPsim Lab, HEC Montréal. Michael J. Murray Instructional Assistant Professor University of Houston C. T. Bauer College of Business

C. I. Bauer College of Business Department: Decision and Information Sciences

Teaching Supply Chain Management with SAP and ERPsim

Michael J. Murray, PhD, PE Instructional Associate Professor Univ. of Houston/C.T. Bauer College of Business

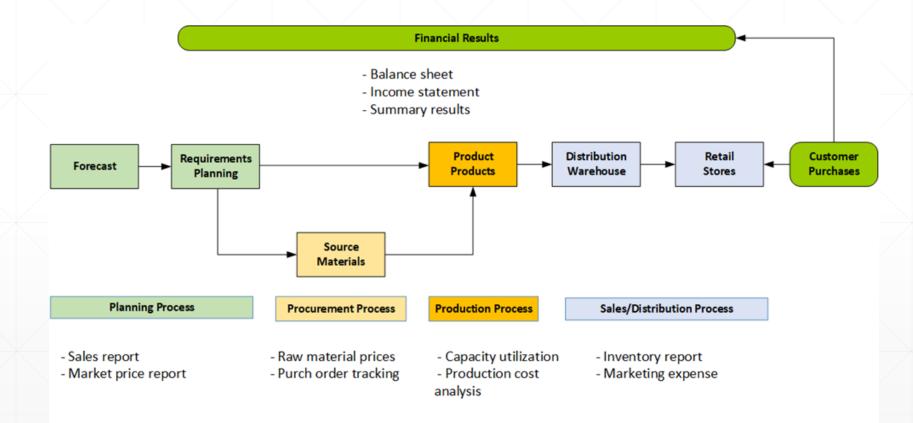
We offer ERP courses in both the undergraduate and graduate curriculum

Required for MS SCM and elective for MBA's; elective for undergrads

ERPsim Muesli Manufacturing simulation has been included since 2008

This presentation will focus on graduate course, but can apply to undergrad

The course has three primary learning goals

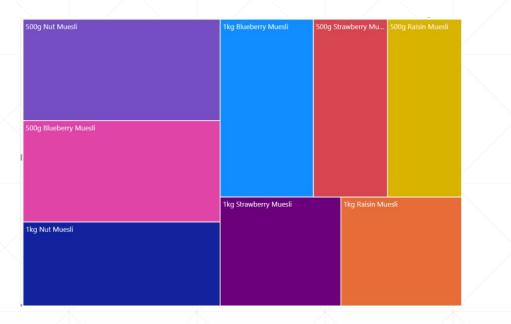

 Show how ERP systems are used to execute the core supply chain business processes (based on SCOR* model)

Introduce supply chain finance and focus on how it drives supply chain decisions

Use data/ analytics to improve supply chain performance

* ASCM SCOR Model. (n.d.). Retrieved January 16, 2022, from https://scor.ascm.org/processes/introduction

ERPsim and the SCOR model



Students use a variety of tools

- Open-source finance textbook: Two chapters from <u>Principles of Finance</u>, Dahlquist & Knight, 2024. Rice University OpenStax (free).
- SAC exercises* and PowerBI (Business Builders starting fall, 2025)
- Muesli manufacturing simulation: Introduction > Extended > Advanced
- Manufacturing Cash-to-Cash exercise
- Balanced scorecard
- Readings paired with case studies

* Kalé, Nitin and Jones, Nancy. Practical Analytics, 2nd Ed, 2020.

Example analytics

			Actual	
Target	Q1	Q2	Q3	Q4
75%	66.7%	71.4%	82.9%	77.8%
min	96 hr.	90 hr.	77 hr.	82 hr.
1.69	1.90	1.78	1.53	1.63
3.0	2.0	2.7	3.4	3.1
min	NM	7	3	2
< 15	18.6	20.2	17.3	13.5
< 7	7.3	6.4	8.1	9.6
> 10	0	11.7	10.3	9.1
	75% min 1.69 3.0 min < 15 < 7	75% 66.7% min 96 hr. 1.69 1.90 3.0 2.0 min NM < 15	75% 66.7% 71.4% min 96 hr. 90 hr. 1.69 1.90 1.78 3.0 2.0 2.7 min NM 7 < 15	TargetQ1Q2Q375%66.7%71.4%82.9%min96 hr.90 hr.77 hr.1.691.901.781.533.02.02.73.4minNM73< 15

		A	В	С
	1	Statement of Cash Flows for		
	2			
	3	Cash flows from operating activities:		
	4	Net income (loss)		2,274,396.12
		Adjustments to reconcile net income (loss) to		
	5	net cash provided by operating activities		
	6	Depreciation and amortization		
	7	Building	318,181.92	
	8	Equipment	272,727.60	
	9	Changes in working capital		
	10	Accounts receivable	(1,783,259.50)	
	11	Finished inventories	(297,181.40)	
	12	Raw material inventories	(6,567.42)	
	13	Accounts payable	310,244.31	
	14	Net cash provided by operating activities		1,088,541.63
	15			
	16	Cash flows from investing activities:		
	17	Expenditures for property, plant and equipment	-	
	18	Net cash provided by (used in) investing activities		-
	19			
	20	Cash flows from financing activities:		
	21	Repayment of debt		
	22	Dividends paid		
	23	New debt issued (bank loans)	329,111.89	
	24	Net cash provided by (used in) financing activities		329,111.89
	25			
	26	Increase (decrease) in cash and cash equivalents		1,417,653.52
	27	Cash and cash equivalents at beginning of simulation		3,000,000.00
	28	Cash and cash equivalents at end of simulation		4,417,653.52

Partial list of course readings and case studies

- Souza, G.C. (2014). Supply chain analytics. Business Horizons, 57, 595 – 605.
- Ransbotham, S., Kiron, D., & Prentice, P.K. (2015). Minding the Analytics Gap. *MIT Sloan Management Review*, *56* (*3*), *63* – *68*.
- Davenport, T.H. (2013). Keep up with your quants. *Harvard Business Review*, 91 (7/8), 120 123.
- Kaplan, R.S., & Norton, D.P. (2007). Using the balanced scorecard as a strategic management system. *Harvard Business Review, 85 (7/8), 150 – 161*.

- Business Intelligence at SYSCO (HBS 9-604-080)
- Caterpillar Tunneling: Revitalizing User Adoption of Business Intelligence (Ivey W13513)
- Managing with Analytics at P&G (HBS 9-613-045)
- The Scotts Company A & B (Insead INS915 & IN918)

How are students assessed?

Standards-based grading approach

Individual formative quizzes and summative mid-term assessment

Team-based case study presentation

 Team-based "Annual Report" with balanced scorecard based on advanced manufacturing simulation

Do students learn durable skills?

			Start of Course		End of Course				
			Mean	SD	Mean	SD	t- statistic	p-value	
 Demonstrate the execu SCOR processes with 		1. Ability to accomplish supply chain transactions in SAP	2.54	1.77	5.54	1.07	8.25	0.000	
 Less enthusiasm abou 	It SAP's	2. Attitude about SAP's ease of use	4.23	1.53	4.92	1.38	1.63	0.116	
ease of use		3. Overall attitude towards SAP	4.50	1.73	5.69	1.09	2.98	0.006	
 Develop an understand appreciation of the interview 		4. Knowledge of financial terminology	4.19	1.50	5.38	1.17	2.87	0.008	
finance with SCM	gration of	5. Knowledge of financial processes	3.88	1.28	5.23	1.18	3.47	0.002	

Start of Course

End of Course

Reference: Murray, Michael J. (2022) "Teaching how supply chain operations impact financial results: A case study using cloud-based simulation, "*Southwestern Business Administration Journal*: Vol. 20: Iss. 1, Article 2. Available at: <u>https://digitalscholarship.tsu.edu/sbaj/vol20/iss1/2</u>

Do students learn durable skills (continued)?

		Start of Course		End of Course			•
		Mean	SD	Mean	SD	t- statistic	p-value
 Show how supply chain financial 	6. Knowledge of supply chain process financial impact	5.08	1.02	5.88	0.82	3.10	0.005
decisions affect overall performance	7. Knowledge of analytics terminology	4.50	1.27	5.65	1.20	2.98	0.006
	8. Knowledge of analytics processes	4.50	1.33	5.58	1.14	2.62	0.015
✓ Use data/analytics to improve	9. Ability to interpret analytic results	4.69	1.44	5.88	0.99	3.44	0.002
supply chain performance	10. Attitude towards supply chain analytics	5.81	1.44	6.50	0.71	1.93	0.065
		•	· ·	•			

Reference: Murray, Michael J. (2022) "Teaching how supply chain operations impact financial results: A case study using cloud-based simulation, " *Southwestern Business Administration Journal*: Vol. 20: Iss. 1, Article 2. Available at: <u>https://digitalscholarship.tsu.edu/sbaj/vol20/iss1/2</u>

Opportunities for improvement

Incorporate more predictive analytics

Apply machine learning where appropriate

Consider generative AI applications?

Souza's Supply Chain Analytics

Table 1. SCOR	model and example	es of decisions at the three	levels			
SCOR Domain	Source	Make	Deliver	Return		
Activities	Order and receive materials and products	Schedule and manufacture, repair, remanufacture, or recycle materials and products	Receive, schedule, pick, pack, and ship orders	Request, approve, and determine disposal of products and assets		
Strategic (time frame: years)	 Strategic sourcing Supply chain mapping 	 Location of plants Product line mix at plants 	 Location of distribution centers Fleet planning 	 Location of return centers 		
Tactical (time frame: months)	 Tactical sourcing Supply chain contracts 	 Product line rationalization Sales and operations planning 	 Transportation and distribution planning Inventory policies at locations 	 Reverse distribution plan 		
Operational (time frame: days)	 Materials requirement planning and inventory replenishment orders 	 Workforce scheduling Manufacturing, order tracking, and scheduling 	 Vehicle routing (for deliveries) 	 Vehicle routing (for returns collection) 		
Plan	Demand forecasting (long term, mid term, and short term)					

Souza's Supply Chain Analytics

Table 2. Analytic techniques used in supply chain management							
Analytics Techniques	Source	Make	Deliver	Return			
Descriptive	Supply chain mapping Supply chain visualization						
Predictive	 Time series methods (e.g., moving average, exponential smoothing, autoregressive models) Linear, non-linear, and logistic regression Data-mining techniques (e.g., cluster analysis, market basket analysis) 						
Prescriptive	 Analytic hierarchy process Game theory (e.g., auction design, contract design) 	 Mixed-integer linear programming (MILP) Non-linear programming 	 Network f algorithm MILP Stochastic dynamic programm 	s			

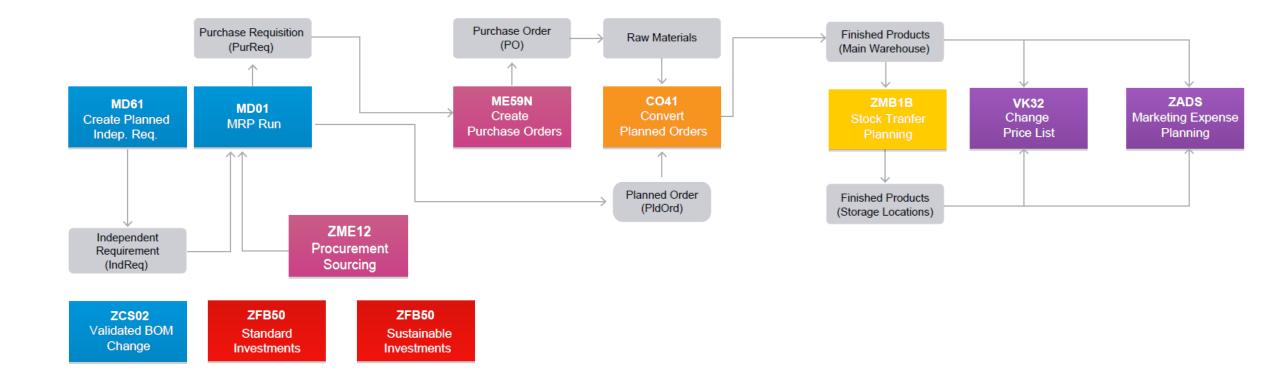
Q&A Experience Sharing

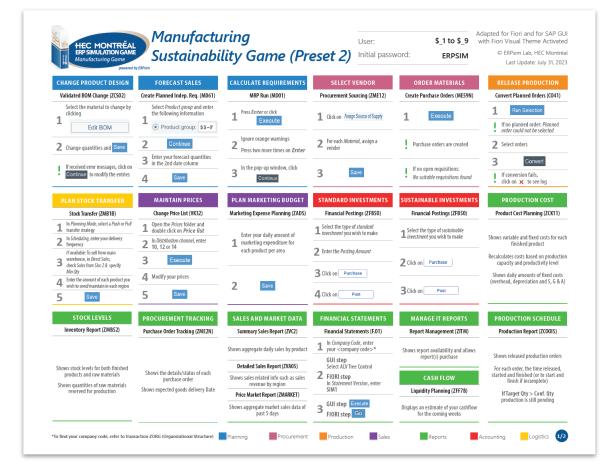
ERPsim Academic Edition © 2004-2025 HEC Montréal – ERPsim Lab.

ERPsim Disruptors

ERPsim Academic Edition ERPsim © 2004-2025, ERPsim Lab, HEC Montréal.

ERPsim Manufacturing




Manufacturing Sustainability Game Layout

Job Aid (Manufacturing Sustainability Preset 2/3)

HEC MONT ERP SIMULATIO Manufacturing G	ame powered by ERPsim	Sus	stain	abi	lity G	iam	e (Pr	reset	2)	Initial pass	sword:	ERPSI	N (ERPsim Lab, HEC Mo Last Update: July 31,	
Bill of Materia	als														
Nut S	Strawberry	0	riginal		Raisin		Blueb	erry	Mixe	ł	FIXE	о соятя	(€ paid ea	ch 5 days)*	
	\$-F03 500			500g	\$\$-F04	500g	\$\$-F02	500g	\$\$-F06	500g	Labor			20 000	
	\$-F13 1kg			1kg	\$\$-F14	1kg	\$\$-F12	1kg	\$\$-F16	1kg	Manufactu	iring overhea	Ŀ	15 000	
30% oat* 3	20% wheat* 30% oat*	30)% wheat*)% oat*		20% wheat 30% oat*		20% whe 30% oat*		20% wh 30% oat	*	S, G & A			40 000	
	0% strawberry box / 1 bag*	* 1k	oox / 1 bag	*	20% raisins 1 box / 1 ba		20% blue 1 box / 1		30% frui 1 box / 1	ts & nuts** bag*	Depreciati	on (Building)		1 250	
	ninimum	*mi	inimum		*minimum	9	*minimum	oug	*minimum			on (Equipmer	it)	50 000	
									**requires o	all fruits/nut	*Billed autor				
	S	TOR	AGE CA	APAC	ITY AND						D.	AILY OVE	RHEAD C	ARBON	
Product Ty	pe	Cu	irrent Spa	ce	Daily additiona	/ Cost pe l 50 000			Carbon co nal 50 000		Purchased	Energy (kg of	CO ₂ e)	500	
Finished proc	ducts	25	0 000 box	es		€500		2 500	(kg of CO ₂	e)/day	Other Ove	rhead (kg of (CO ₂ e)	400	
Raw materi	ials	2	250 000 ka		€1 000			5 000 (kg of CO₂e)/day		e)/day	PRODUCTION CONSTRAINTS		TRAINTS		
Packaging (bags a	nd boxes)	75	50 000 unit	ts		€100		1 500	(kg of CO ₂ e	e)/day	Capacity	units/day)		24 000	
Billed automatically												I Capacity Co	st	1 000 000**	
	SUPP	IFR	5				C	USTON	/ FRS		(€ per 1 0	· · ·		1000 000	
Vendor		/01	V11	V02	V12				lypermarke	ets		l Capacity Ca (kg per 1 000		1 000	
Lead time (days)		2-3	1-4	2-3				Payment	Time: 20 da nate Marke	/S	Productio	n Carbon Em	ssion	0.30 kg per box	
Delivery Cost (euros	5)	-	€1000	-	€2000	DC10		€90 000 p	per team pe	week	Setup Car	bon Emission		50 kg per hour	
Delivery Carbon (kg	of CO ₂ e) 10	000	10 000	6 000	15 000		13	Payment	Time: 10-20	days	Minimum	/Maximum Lo	t Size	16 000/48 000	
, (g						DC12			nate Marke per team p					uipment depreciation	
TRANSPO	RTATION	AND	CARBO	N FE	ES	1	3		ndependen Time: 1-20 c		costs		,		
Movement type			Cost (€)	Ca	r bon (kg)	- 🍊		Approxir	nate Marke	t Size			IE REDU		
Main Warehouse to	Regions		500		750	0014						time (hrs)	Cost (€)	Carbon (kg)	
Regions to Custome	rs		-		200		FIXE	D CARB	ΟΝ ΤΑΧ		Setup	8	COSE (€)	Carbon (Kg)	
Main WH to Custom	ers (per unit)		0.05		0.25	Price	e (€/kg of (CO ₂ e)		0.20		7	-	100	
		SUS	TAINA	RIFJ	NVESTN	IFNTS						6		250	
Tunc	6-						uction (%	N	x. Reducti	op (%)		5	125 000 250 000	500	
Type		st (€)	Car		g of CO₂e)	Red) ivia	x. Reducti 45	011 (76)		4	500 000	1 000	
Freight Fleet Improve Sustainable Manufact		000		20			15		45			3	1 250 000	2 500	

Rounds Evolution

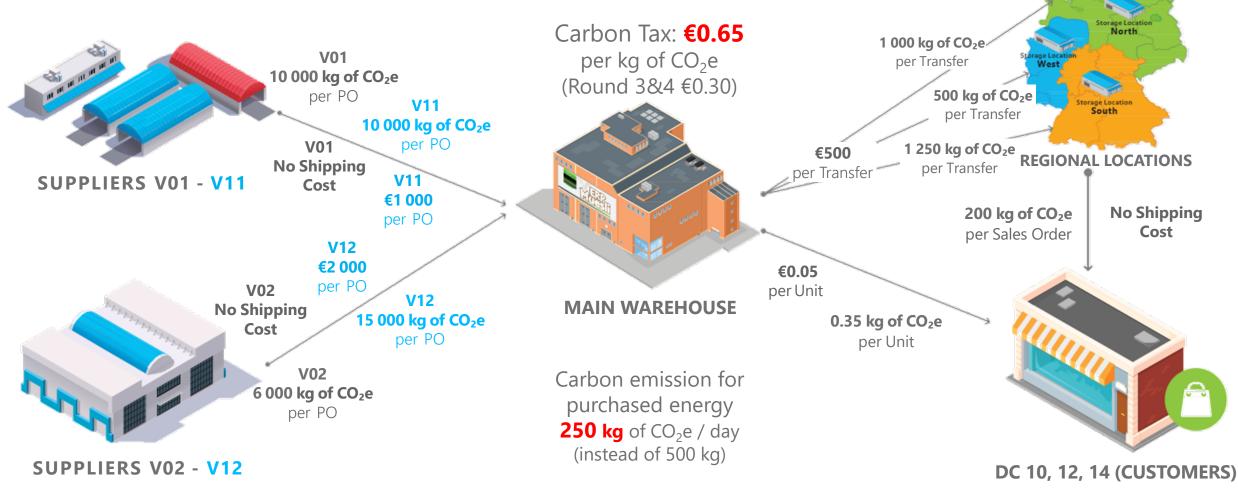
Round 1

- No carbon tax
- Sales from the main warehouse only
- Standard investments allowed

Round 2

- Carbon tax now implemented
- Suppliers V11 and V12 now available
- Sustainable investments allowed
- ZITM enabled

Round 3


- Increased carbon tax
- Sales from regional warehouses now available
- Random disruption

Round 4

- Increased carbon tax
- Random disruption

Round 4 – Scenario

Random Disruptions

1) Cold Spell

- Higher carbon emissions per unit of raw material purchased
- Lower storage energy

2) Heat Wave

- Higher carbon emissions per unit of raw material purchased
- Higher storage energy

3) Disruption in Supply Chain

- Less-optimal sourcing and routing
- Higher carbon emissions for all products purchased

4) New legislation Renewable Energy Adoption

- Higher carbon tax
- Lower energy footprint

5) Waste Heat Recovery System

- Lower energy consumption
- Higher maintenance needs

6) Main Warehouse Relocation

- Increased distance between main-hub and two regions as well as Germany
- Reduced the distance to the third region
- Impact on carbon emissions from deliveries

The cold spell increases the carbon emissions per unit of raw material purchased, as suppliers must use energy-intensive protection measures to protect the fruits, nuts, cereals from the cold.

However, your company requires less energy to stick them in a cool environment.

ERPsim Academic Edition © 2004-2025 HEC Montréal – ERPsim Lab.

Commercial version powered by

The heat wave increases the carbon per unit of raw material purchased, as suppliers must use energy to protect the fruits and/or nuts from the intense heat before the harvest.

Furthermore, your company requires more energy to stock them in a cool environment.

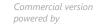
ERPsim Academic Edition © 2004-2025 HEC Montréal – ERPsim Lab.

Commercial version powered by

Disruptions in your supplier's supply chain require them to use less-optimal sourcing and routing.

Therefore, all products purchased from this supplier will be generating more carbon emissions.

ERPsim Academic Edition © 2004-2025 HEC Montréal – ERPsim Lab.



New legislation in Germany increases drastically the carbon tax while reducing the carbon footprint of purchasing energy as more energy is now generated by renewable sources.

Newly installed waste heat recovery system on your machineries allow your company to reuse heat from your production process, thus reducing the amount of energy purchased. A newly installed waste heat recovery system on your machines allows your

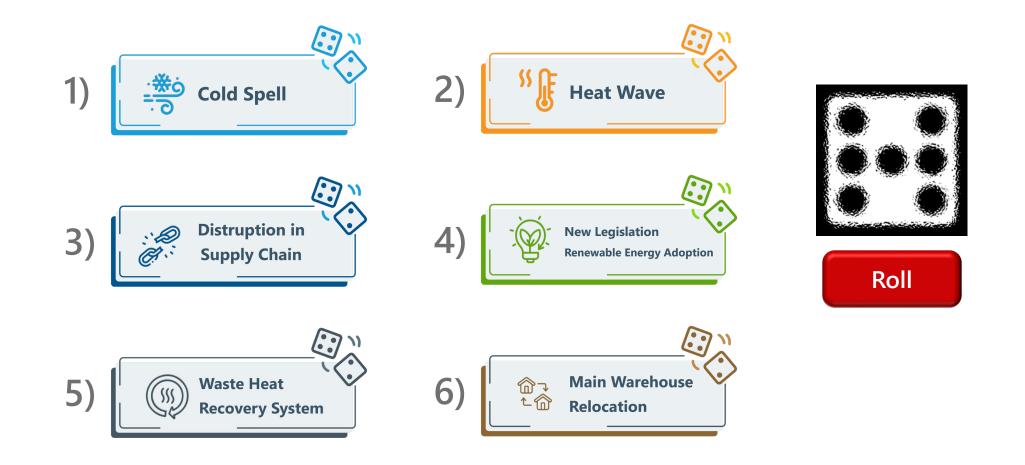
However, the more complex machineries require more care when cleaning up between production batches.

ERPsim Academic Edition © 2004-2025 HEC Montréal – ERPsim Lab.

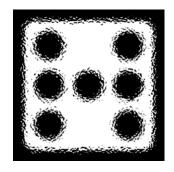
A recent relocation of your main warehouse increases the distance between your main hub and two regions and Germany while reducing the distance with the third region.

The distance difference will be impacting the carbon emissions generated by deliveries from the main warehouse to the regions and by sales delivered directly from the main warehouse.

Random Disruptions


Event	Name	Context	Scope
1	Cold Spell	The cold spell increases the carbon emission per unit of raw material purchased, as suppliers must use energy-intensive protection measures to protect the fruits/nuts/cereals from the cold. However, your company requires less energy to stock them in a cool environment.	All suppliers, 2 random raw materials
2	Heat Wave	The heat wave increases the carbon per unit of raw material purchased, as suppliers must use energy to protect the fruits and/or nuts from the intense heat before the harvest. Furthermore, your company requires more energy to stock them in a cool environment.	All suppliers, 2 random raw materials
3	Disruption in Supply Chain (Vendors)	Disruptions in your supplier's supply chain required them to use less-optimal sourcing and routing. Therefore, all products purchased from this supplier will be generating more carbon emissions.	Random suppliers, All products
4	New Legislation, Renewable Energy Adoption	New legislations in Germany increases drastically the carbon tax while reducing the carbon footprint of purchasing energy as more energy is now generated by renewable sources.	-
5	Waste Heat Recovery System	Newly installed waste heat recovery system on your machineries allow your company to reuse heat from your production process, thus reducing the amount of energy purchased. However, the more complex machineries require more care when cleaning up between production batches.	-
6	Main Warehouse Relocation	A recent relocation of your main warehouse increases the distance between your main hub and two regions and Germany while reducing the distance with the third region. The distance difference will be impacting the carbon emissions generated by deliveries from the main warehouse to the regions and by sales delivered directly from the main warehouse.	Random regions

Round 4 - Random Disruption

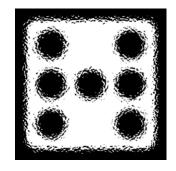


Disruption 1 – Cold Spell

Main Impact	Impact 2	Impact 3	Impact on students' strategies
Increase carbon per unit purchased	Decrease carbon for overstocking raw materials and finished goods	Decrease slightly carbon for purchased energy	Students must assess whether to continue ordering the affected raw materials. If they decide against it, they may need to revise their production, sales, and marketing strategies accordingly.

Impact	Default values	New values
Carbon emission per unit purchased for the impacted raw materials	Product-dependant	+2.5 kg/unit
Carbon emission for overstocking raw materials	5 000 kg/container	-2 500 kg/container
Carbon emission for overstocking finished goods	2 500 kg/container	-1 000 kg/container
Carbon emission for purchased energy	500 kg/day	-100 kg/day

Event	Raw Material Impacted
1	Nuts and Strawberries
2	Nuts and Blueberries
3	Nuts and Raisins
4	Strawberries and Blueberries
5	Strawberries and Raisins
6	Blueberries and Raisins

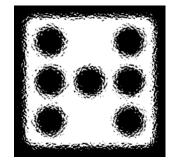


Disruption 2 – Heat Wave

Main Impact	Impact 2	Impact 3	Impact on students' strategies
Increase carbon per unit purchased	Increase carbon for overstocking raw materials and finished goods	Increase slightly carbon for purchased energy	Students must assess whether to continue ordering the affected raw materials. If they decide against it, they may need to revise their production, sales, and marketing strategies accordingly.

Impact	Default values	New values
Carbon emission per unit purchased for the impacted raw materials	Product-dependant	+2.5 kg/unit
Carbon emission for overstocking raw materials	5 000 kg/container	+2 500 kg/container
Carbon emission for overstocking finished goods	2 500 kg/container	+1 000 kg/container
Carbon emission for purchased energy	500 kg/day	+100 kg/day

Event	Raw Material Impacted
1	Nuts and Strawberries
2	Nuts and Blueberries
3	Nuts and Raisins
4	Strawberries and Blueberries
5	Strawberries and Raisins
6	Blueberries and Raisins



Disruption 3 – Supply Chain (vendors)

Main Impact	Impact 2	Impact 3	Impact on students' strategies
Increase carbon for procurement goods movements	Increase carbon per unit purchased		Students must determine whether to continue ordering from the affected suppliers. If they choose not to, they may need to adjust their procurement strategies.

Impact	Default values	New values
Carbon emission for procurement goods movements from the impacted suppliers	Supplier-dependant	+3 000 kg/movement
Carbon emission per unit purchased from the impacted suppliers	Product-dependant	+1.00 kg/unit

Event	Suppliers Impacted
1	V01 and V02
2	V01 and V12
3	V11 and V02
4	V11 and V12

Disruption 4 – New Legislation and Renewable Energy Adoption

Main Impact	Impact 2	Impact 3	Impact on students' strategies
Increase significantly carbon tax	Decrease carbon for purchased energy		The significant rise in the carbon tax will compel students to reassess how their carbon emissions affect their profitability and reevaluate their operations.

Impact	Default values	New values
Carbon tax	0.30 €/kg CO2e	+0.25 €/kg CO2e
Carbon emission for purchased energy	500 kg/day	-250 kg/day

Disruption 5 – Waste Heat Recovery System

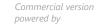
Main Impact	Impact 2	Impact 3	Impact on students' strategies
Decrease carbon per unit produced	Increase carbon for setup time	Decrease carbon for purchased energy	Increasing carbon emissions during setup time while reducing carbon emissions during production will require students to reassess their investment strategies and to optimize their production schedule.

Impact	Default values	New values
Carbon per unit produced	0.30 kg/box produced	-0.15 kg/box produced
Carbon per hour of setup time	50 kg/hour	+200 kg/hour
Carbon emission for purchased energy	500 kg/day	-200 kg/day

Disruption 6 – Main Warehouse Relocation

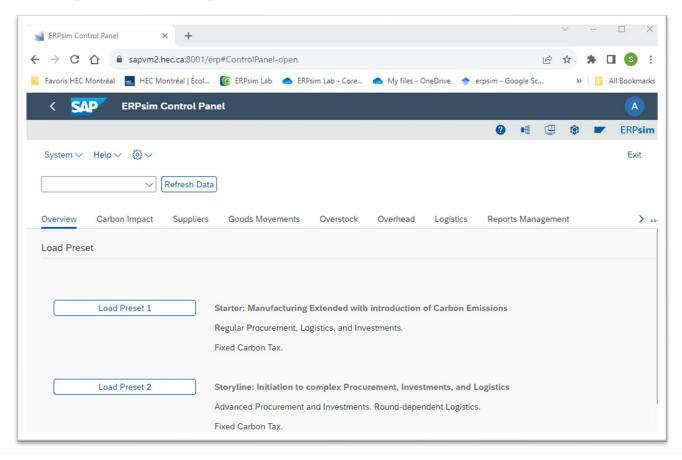
Main Impact	Impact 2	Impact 3	Impact on students' strategies
Increase carbon for internal goods movement toward 2 regions	Decrease carbon for internal goods movement toward one region	Increase slightly carbon for sales from the main warehouse	The substantial rise in carbon emissions in two regions, coupled with a decrease in another, requires students to reassess their decision to sell in these regions. Furthermore, the increase in carbon emissions when selling from the main warehouse should incite students to use the regional warehouses.

Impact	Default values	New values		Event	New Main Warehouse Location	
Carbon for internal goods movements toward the new region of the	750 kg/movement	-250 kg/movement	Schleswig Holstein Hamburg Lower Saxony Breme 1North	1	Moved to the North closer to the West	
warehouse Carbon for internal goods	750	+250 kg/movement	6 Saxony Brandenbourg Anhalt 2	2	Moved to the North closer to the South	
movements toward the second closest region	kg/movement		West Hesse 3	3	Moved to the South closer to the North	
Carbon for internal goods movements toward the farthest region	750 kg/movement	+500 kg/movement	Palatinate 4 South	4	Moved to the South closer to the West	R
Carbon from sales from the main warehouse	0.25 kg/unit moved	+0.10 kg/unit moved	Baden Wurttemberg	5	Moved to the West closer to the South	
				6	Moved to the West closer to the North	


ERPsim Disruptions Toolset

ERPsim Academic Edition ERPsim © 2004-2025, ERPsim Lab, HEC Montréal.

Disruptors Guide





ZCONTROL

https://erpsim.hec.ca/en/node/148

Other Elements of Surprise

- OData: unavailable, for own team, for all teams
- Digital Transformation: round-by-round discovery
- ZLINK: Disclose information as game is played
- Inherit a company:
 - Mid-game teams' switch
 - Play a few rounds on-behalf, start the game on Round N
- Lock access to the system
- Sustainability: variable carbon tax, reports for a fee, single or multiple vendors, selling location (MW, Regions, both), sustainable investments, determine carbon sources (overhead, production,...)

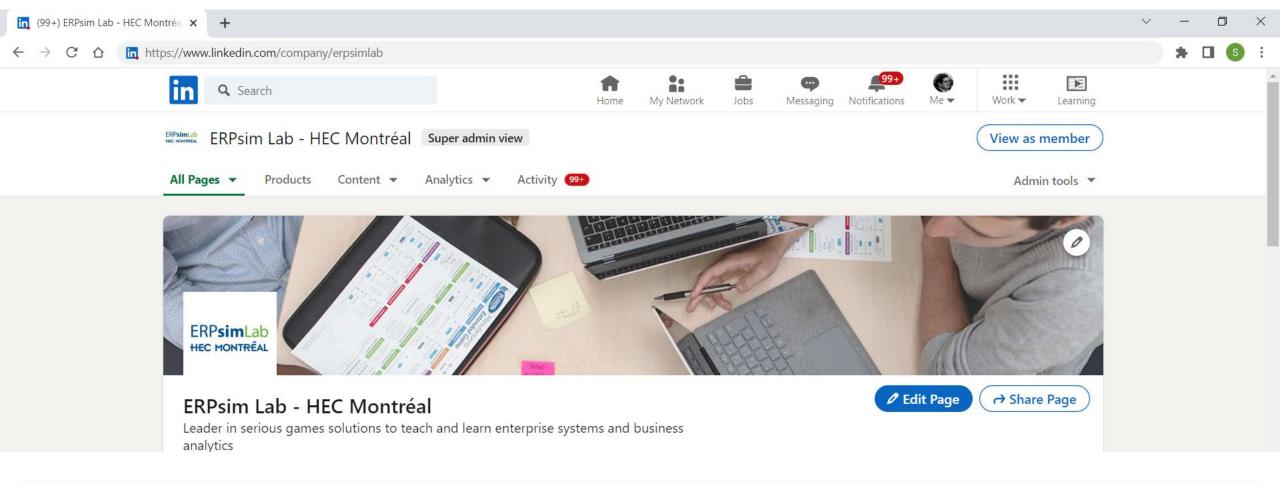
Q&A Toolset

ERPsim Academic Edition © 2004-2025 HEC Montréal – ERPsim Lab.

ERPSITLab HEGMONTREAL

ERPsim Lab User Group Meeting 2025 August 11-13

Hélène-Desmarais Building HEC Montréal, Canada



ERPsim Academic Edition © 2004-2025 HEC Montréal – ERPsim Lab. Commercial version BÅTON

linkedin.com/company/erpsimlab

33

erpsim.hec.ca

Commercial version powered by

Thank You!

Website: erpsim.hec.ca Email: erpsim@hec.ca

ERPsim Academic Edition © 2004-2025 HEC Montréal – ERPsim Lab.

